Precision AFM measurements of dynamic interactions between deformable drops in aqueous surfactant and surfactant-free solutions.
نویسندگان
چکیده
The atomic force microscope (AFM) has provided unprecedented opportunities to study velocity-dependent interactions between deformable drops and bubbles under a range of solution conditions. The challenge is to design an experimental system that enables accurate force spectroscopy of the interaction between deformable drops and thus the extraction of accurate quantitative information about the physically important force-separation relation. This step requires very precise control and knowledge of the interfacial properties of the interacting drops, the drive conditions of the force-sensing cantilever, the disposition of the interacting drops on the substrate and on the cantilever, and transducer calibrations of the instrument in order to quantify the effects of approach velocities and interfacial deformation. This article examines and quantifies in detail all experimental conditions that are necessary to facilitate accurate processing of dynamic force spectroscopy data from the AFM using the well-defined system of tetradecane drops in aqueous solutions under surfactant and surfactant-free conditions over a range of force magnitudes that has not been attained before. The ability of drops to deform and increase the effective area of interaction instead of decreasing the distance of closest approach when disjoining pressure exceeds the Laplace pressure means that the DLVO paradigm of colloidal stability as being determined by a balance of kinetic energy against the height of the primary maximum is no longer valid. The range of interfacially active species present in alkane-aqueous systems investigated provides insight into the applicability of the tangentially immobile boundary condition in colloidal interactions.
منابع مشابه
Measurements of dynamic forces between drops with the AFM: novel considerations in comparisons between experiment and theory
Dynamic forces between a deformable tetradecane oil drop (radius of curvature z 25 mm) anchored on the cantilever of the Atomic Force Microscope (AFM) and similar oil drops (radii of curvature 80 to 500 mm) on the substrate in aqueous electrolyte with added sodium dodecyl sulfate surfactant have been studied. Measurements were made over a range of scan rates that span the range of Brownian velo...
متن کاملAnomalous pull-off forces between surfactant-free emulsion drops in different aqueous electrolytes.
A systematic study of collisions between surfactant-free organic drops in aqueous electrolyte solutions reveals the threshold at which continuum models provide a complete description of thin-film interactions. For collision velocities above ~1 μm/s, continuum models of hydrodynamics and surface forces provide a complete description of the interaction, despite the absence of surfactant. This inc...
متن کاملAmmonia-mediated Method for One-step and Surfactant-free Synthesis of Magnetite Nanoparticles
Magnetite (Fe3O4) nanoparticles have been successfully prepared by a novel one-step and surfactant-free approach utilizing ferrous ion, as a single iron source. In this manner, the reaction occurs between two aqueous solutions via the spontaneous transfer of ammonia gas from one to another in room temperature. No ferric source or oxidizing specie, oxidation controlling and capping agents are ne...
متن کاملBiophysical Studies on the Interaction of Insulin with a Cationic Gemini Surfactant
A novel quaternary ammonium-based cationic gemini surfactant (S6) having 1,6 di-bromo hexane as a spacer, have been used and its interaction with insulin in aqueous solution (pH, 7.40) was investigated by several methods including fluorescence spectroscopy, UV-Vis spectroscopy, circular dichroism, dynamic light scattering, ζ-potential measurements, conductivity and transmission electron microsc...
متن کاملKinetics of Surfactant Adsorption at Fluid-Fluid Interfaces
We present a theory for the kinetics of surfactant adsorption at the interface between an aqueous solution and another fluid (air, oil) phase. The model relies on a free-energy formulation. It describes both the diffusive transport of surfactant molecules from the bulk solution to the interface, and the kinetics taking place at the interface itself. When applied to non-ionic surfactant systems,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Langmuir : the ACS journal of surfaces and colloids
دوره 27 6 شماره
صفحات -
تاریخ انتشار 2011